346 research outputs found

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    Postural control anomalies in children with Tourette syndrome

    Get PDF
    The goal of the present study was to determine whether postural control is affected in Gilles-de-la-Tourette syndrome (TS). Center of pressure (COP) displacements were recorded in children with TS and unaffected siblings (7-16 yrs) in three conditions using a force platform: 1) Eyes-Open, 2) Eyes-Closed, 3) One-Leg standing with eyes open. The COP range and velocity were higher in children with TS than in unaffected siblings in all conditions. These differences could not be attributed to age, present tic severity, comorbidities (hyperactivity and compulsions) or medication. The data suggest that sub-clinical postural control anomalies are present in TS

    Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals

    Get PDF
    Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases

    Scholarly publishing depends on peer reviewers

    Get PDF
    The peer-review crisis is posing a risk to the scholarly peer-reviewed journal system. Journals have to ask many potential peer reviewers to obtain a minimum acceptable number of peers accepting reviewing a manuscript. Several solutions have been suggested to overcome this shortage. From reimbursing for the job, to eliminating pre- publication reviews, one cannot predict which is more dangerous for the future of scholarly publishing. And, why not acknowledging their contribution to the final version of the article published? PubMed created two categories of contributors: authors [AU] and collaborators [IR]. Why not a third category for the peer-reviewer

    Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses

    Get PDF
    Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell

    Reply to Elmendorf and Ettinger: Photoperiod playsa dominantand irreplaceable role in triggering secondary growth resumption

    Get PDF
    In their Letter, Elmendorf and Ettinger (1) question the dominant role of photoperiod in driving secondary growth resumption (hereafter referred to as xylem formation onset) of the Northern Hemisphere conifers, recently reported by Huang et al. (2). Their opinions are grounded on the following three aspects, including 1) the seasonality of the photoperiod, 2) the dependence of the predictor variables (e.g., photoperiod, forcing, and chilling) on the response variable (the date of onset of xylem formation, day of the year [DOY]), and 3) the limited value of the obtained models for interannual forecasting. We think they bring up an interesting issue that deserves further discussion and clarification. Photoperiod is acknowledged to regulate spring bud swelling while wood formation starts (3, 4). Although photoperiod seasonality occurs at each site, its influence is marginal in our study given that the analysis involved comparisons among sites across the Northern Hemisphere. Our conclusion that photoperiod plays a dominant role was built upon the combination of several coherent pieces of evidence, rather than “the crux of Huang et al….” as they pointed out. First, we clearly stated that model 2, which modeled DOY as a function of the mean annual temperature of the site (MAT), forcing, chilling, and soil moisture, was considered the best model in terms of parsimony according to minimum Akaike information criterion and Bayesian information criterion, rather than R2 as referred to in their Letter. Second, photoperiod interacted with MAT and can explain 61.7% of the variance of MAT alone (2). Therefore, we concluded that secondary growth resumption was driven primarily by MAT and photoperiod or by their interaction, which is challenging to be disentangled without experimental data, we agree. In terms of biological functioning, they play an ..

    Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS.

    Get PDF
    Many mutations confer one or more toxic function(s) on copper/zinc superoxide dismutase 1 (SOD1) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we found that oxidized wild-type SOD1 and mutant SOD1 share a conformational epitope that is not present in normal wild-type SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord were markedly C4F6 immunoreactive, indicating that an aberrant wild-type SOD1 species was present. Recombinant, oxidized wild-type SOD1 and wild-type SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to that of FALS-linked mutant SOD1. Our findings suggest that wild-type SOD1 can be pathogenic in SALS and identify an SOD1-dependent pathogenic mechanism common to FALS and SALS
    corecore